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1.1 Structural Time Series Models
1.2 Identification Strategies

N

. Applications to Fiscal Shocks

2.1 Tax Policy Shocks
2.2 Government Spending Shocks
2.3 Austerity Measures

3. Two Difficulties in Interpreting SVARs

3.1 Noninvertibility
3.2 Time Aggregation
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. Systematic Tax Policy and the ZLB



3. Two Difficulties in Interpreting SVARs

Hansen and Sargent, 1991, “Two Difficulties in Interpreting Structural
Vector Autoregressions”, Rational Expectations Econometrics

3.1 Noninvertibility (nonfundamentalness)

3.2 Time aggregation



3.1 Noninvertibility
Invertibility of MA representation
zy = M(L)v,

requires that det(M(L)) # 0 for | L |[< 1.

If so, then v; is fundamental white noise for z;, i.e. v; is contained in
the linear space spanned by current and lagged z;.

There are infinitely many other MA representations
ze = M(L)&,

in which 0; is nonfundamental and is not contained in the linear space
spanned by current and lagged z;.



Economic agents make decisions based on current and lagged ¢e; living in
a space 77, the agent's information set.

Econometricians make inference based on current and lagged z; living in
a space Z¢, the econometrician's information set.

e; must be fundamental for z;, i.e. the information sets must be the
same.

If not, there is no hope for the econometrician to identify e; without
more assumptions.



Model Example |

Consider again the simple NK model
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there is a VAR(1) representation for 9£°° and m;
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The assumed shock process delivers invertibility in the past.



But now assume suppose v; is white noise and

ur = ey 1 , e is white noise
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The matrix on the left looses rank at L =
unit circle.

R which is inside the

Hence there is no SVAR representation for [§£°F, ;] for this shock
process.



Model Example Il
Consider RBC model:
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where e and ef_, are white noises with unit variance.

Optimality requires
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Loglinearizing and simplifying
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For g = 1, the MA representation is

] - o[ L (3
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where the determinant of the MA term is a constant and therefore has no
roots inside the unit circle (provided o # 1).

Hence there exists a SVAR representation for ¢; and k;;1, which can be
obtained by inverting the MA polynomial matrix.



Now suppose g =2, i.e. & = ¢/ + ¢/,

The solution is
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The MA representation is
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where the determinant of the MA term is proportional to —(L + ¢) and
thus has a root 0 > —6 > —1.

Unambiguously inside the unit circle, so no SVAR representation for ¢;
and Keg1.

The constant 6 is the anticipation rate: the rate at which news about the
future is discounted by rational forward looking agents.
(Ljungqvist and Sargent, 2004 chapter 11).



There are many other theoretical examples

See e.g. Sargent and Hansen (1991), Fernandez-Villaverde et al. (2007),
Mertens and Ravn (2010), Leeper Walker and Yang (2013),...

The problem typically arises when the shock process follows noninvertible
MA, as is the case in ‘news shock’ literature.
The problem is not the VAR methodology, but the insufficiency of z;.

Residuals in VAR will be white noise, but are generally still linear
combinations of all current and lagged structural shocks.



Addressing the Problem

1. Find variables that contain relevant information;
e.g. ‘commodity price index’ and the price puzzle (Sims 1992)

Ramey defense news variable (Ramey 2011), Tax news narrative
(Mertens and Ravn 2011, 2012), Municipal bond spread (Leeper
Walker and Yang, 2013)

2. Flip roots with Blaschke matrices
Lippi and Reichlin 1994, Mertens and Ravn (2010)
3. Large datasets and dimensionality reduction;
State-Space Models, Factor Augmented VARs

4. Impose structure of a DSGE model.



Application: Anticipated Tax Changes

Based on revision Mertens and Ravn, 2012, Empirical Evidence on the
Aggregate Effects of Anticipated and Unanticipated U.S. Tax Policy
Shocks, American Economic Journal: Economic Policy

Matlab codes and data available on my webpage (look for the 2011 RED
companion paper)



Tax policy interventions are often associated with implementation lags

@ Some preference for phasing-in of changes in tax rates
@ Implementation lags are common and can be quite long

@ Therefore, tax policy shocks may often be to a large extent
anticipated

Do implementation lags matter?

Do agents respond to news about future tax rates?

Traditional SVAR analysis can be problematic because of
nonfundamentalness.



The Measurement of Tax Shocks

Romer and Romer (2010) narrative tax changes.

Distinction between anticipated and surprise tax shocks

date 1 date 2 date 1 + 90 days
| | |
announcement implementation
signed by the President

if implemented in this window:
surprise tax shock



The Measurement of Tax Shocks

Romer and Romer (2010) narrative tax changes.

Distinction between anticipated and surprise tax shocks

date 1 date 1 + 90 days date 2
| | |
announcement implementation
signed by the President

if implemented later than date 1 + 90 days:
anticipated tax shock

implementation lag



Example: The Reagan Tax Cut

August 13, 1981: U.S. Congress passes the Economic Recovery Tax Act
of 1981, signed by President Reagan

Reduction in marginal tax rates, reduction in corporate taxes and new
depreciation guidelines.

Phasing-in of the tax changes over time:

1981Q3
1981Q4

1982Q1
1983Q1
1984Q1

$26.7 billion tax liability cut } .
surprise

$17.8 billion tax liability increase

$48.8 billion tax liability cut
$57.3 billion tax liability cut anticipated
$36.1 billion tax liability cut



With this classification we find:

@ A total of 70 exogenous tax liability changes
@ 33 are classified as unanticipated

@ 37 are classified as anticipated

@ the median implementation lag is 6 quarters

@ the minimum implementation lag is 2 quarters

@ the maximum implementation lag is 21 quarters

Kennedy, Reagan and Bush tax acts associated with substantial
anticipated tax changes
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VAR-X Specification

K
7o =dp + C(L)ze—y + D(L)7¢ + F(L)720 + Y Girdi + ue
i=1

74 : Unanticipated tax shocks implemented at date t
7¢; © Anticipated tax shocks "known” at date t

and implemented at date t 4/
K : Maximum anticipation horizon that we allow for

Inspired by VARMA representation.



We measure the anticipated shocks as:

M—i

a _ E a,i+j
Tt,l' = st—j

j=0
sflfj : Tax liability changes signed at date t — j

with an implementation lag of i 4+ j quarters

M : Maximum implementation lag in the data

@ Therefore, we measure the anticipated shocks on the basis of their
remaining implementation lag.

@ lIdeally, one would like to distinguish between tax shocks on the pure

basis of their anticipation horizon but this would require many more
observations



Specification
Oberservables z;, quart. sample 1947:1 - 2006:4

@ Real GDP per capita

Real consumption p.c.

Real investment per capita

Hours worked per capita

Real wages

K=6 (6 quarter maximum anticipation)
C(L) includes one lag
D(L) and F(L) include 12 lags of implemented tax changes



A 1% Unanticipated Tax Cut Gives Rise To

Output Consumption
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68% bootstrapped confidence intervals.



A 1% Anticipated Tax Cut Gives Rise To

Output Consumption
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68% bootstrapped confidence intervals.




Sensitivity to Anticipation Horizon K

Output after Anticipated Tax Cut
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Anticipation Effects of Surprise Tax Changes
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Implications for the US Business Cycle

Tax liability shocks bring about important adjustment dynamics of the
economy.

But have these shocks been important for US business cycles?

Counterfactual: simulate the vector of endogenous variables allowing only
for tax shocks

Larger VAR system with monetary variables (see paper)

Resulting time series are Hodrick-Prescott filtered.



Only Surprise Changes

Output: Surprise Tax Changes
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Only Anticipated Changes

Output: Anticipated Tax Changes

data
3r — — = counterfactual
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All Tax Changes
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Alternative Approach: Municipal Bond Spreads

Leeper, Walker and Yang (2013)
In the US, municipal bonds are exempt from federal taxes.
Y[ yield on a municipal bond at t

V: yield on a taxable bond at t

Define an implicit tax rate

T =1-Y7/V

Assuming bonds are otherwise identical, arbitrage implies 7/ is a weighted
average of discounted expected future tax rates from t to maturity.

Add 7! to a VAR and order first to a Choleski decomposition (but A2 is
problematic).

Ramey (2015) uses LP-1V approach.



Figure 4.4 Effect of News of Future Tax Increase, Leeper, Richter, Walker (2011) Measure
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State Space/Factor Models

Given available samples, VARs contain limited # of variables in z;.
Consider again z; is n x 1 and e; is | x 1, but now n large and n > |.

Also assume
E3
2z =2z +&

where &; is uncorrelated white noise measurement error

True data is from a linear model such that

se = Gsi_1+ Fe
zz = Asi_1+De+&;

with s; is m x 1 state vector.

State space/factor model estimation: keep m relatively low.

See Stock and Watson (2011, 2015) for surveys.



Factor Augmented VARs
Bernanke, Boivin, and Eliasz (2005) consider a reduced form FAVAR(1):

Cz) = C(L) (2_11) + vt

Xt = /\fft + /\th + €

f; are m x 1 unobservable factors

Z; are n X 1 observable core variables of interest

x; are k x 1 additional informational variables (stationary)
@ ¢, are error terms (asymptotically) uncorrelated

o ANfiskxmand A?iskxn

Note: nis ‘small’ but now k > n+ m is large

Again a state space model.



Principal Components Estimation
A simple estimation procedure:

1. Estimate p;, the first n + m principal components of E[x:x;]
Normalize E[p;p;] = I.

2. Estimate VAR system replacing f; by p;.

Note: ldentification restrictions may require additional steps in either
stage (e.g. Bernanke, Boivin, and Eliasz (2005)).

Factor models with external instruments seem particularly appealing (see
Stock and Watson, 2012)



Forni and Gambetti (2014) propose some simple testing procedures

Test for Informational Sufficiency:

Estimate simple VAR for z; and test whether p; Granger causes z;.

°
If rejected, than z; is informationally sufficient.

If not rejected, add factors to the VAR one at a time in decreasing
order until Granger-causality is rejected.

Even if informational sufficiency is rejected, identification of single shock
may still be OK.

Test for ‘Structuralness’ of an Estimated Shock:

@ Test for orthogonality of identified shock to lags of p;.



3.2 The Time Aggregation Problem

Suppose the model for high frequency data is a VAR(p)

G(2)z; = De, 7=1,..,kT

where G(Z) = 1I, — GiZ — ... — G,ZP, Z is the lag operator Z/x, = x,_;.
Suppose the econometrician observes average sampled data
z=(+2Z2+.2Yz, , t=1,..,T

where t indexes the lower frequency. For concreteness, assume that
p>k—1.

Can we fit a VAR for z; and do structural VAR analysis?



Generally no.

The time aggregated data has a VARMA(p,q) representation
B(L)zz = H(Lv;, t=1,...,T

where
E[v]=0, E[vv]] =X, E[vpvl] =0fors #t
Based on results in Marcellino (1999):
@ B(L) has order p or less, i.e. generally the same order as G(L)

@ The order of H(L) is bounded by p if p = k — 1, or otherwise by
p+ 1+ g where g is the smallest positive integer that satisfies
gk<k—p-2<(qg+1)k

® v #D(I +Z+..Z"1)e. Instead v is a linear combination of
current and up to (p + 1)(k — 1) lags of shocks.

Similar results hold for point in time sampling.



We cannot expect to uncover high frequency dynamics with low
frequency data.

Again, the problem is not the VAR, but insufficient data.

In practice, implications for the interpretation of VAR residuals are
potentially serious.
Recent developments:

@ Mixed-Frequency VARs and Nowcasting models

(e.g. Mariano and Murasawa (2009), Banbura, Giannone, Modugno
and Reichlin (2012), Foroni, Ghysels and Marcellino (2013),
Schorfheide and Song (2014))

@ MIDAS-VARs: Ghysels (2012)

Few applications of structural mixed frequency models, see Ghysels
(2012) and Marcellino (2014) for exceptions.



