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Overview

1. Estimating the Effects of Shocks Without Much Theory

1.1 Structural Time Series Models
1.2 Identification Strategies

2. Applications to Fiscal Shocks

2.1 Tax Policy Shocks
2.2 Government Spending Shocks
2.3 Austerity Measures

3. Two Difficulties in Interpreting SVARs

3.1 Noninvertibility
3.2 Time Aggregation

4. Systematic Tax Policy and the ZLB



1.2 Identification Strategies

We have a dynamic model for E [zt | It−1] and we can measure
υt = zt − E [zt | It−1].

The structural impulse response (IR) associated with et are the
coefficients in the MA representation

zt = M(L)υt =
∞∑
i=0

Miυt−i , υt = Det , M0 = I

For shock j : ∂E [zt+h|It ]
∂ejt

=MhDj

We can back out Mh , h > 0 from any of the reduced form models.

But to estimate the (average) dynamic causal effects ∂E [zt+h | It ]/∂ejt
we also need to know Dj , i.e. column j of the impact matrix D.



We have estimates of υt and Σ, and we know that

Σ = Var(Det) = DVar(et)D′ = DD′

Symmetric positive semi-definite Σ provides n × (n + 1)/2 restrictions on
the n2 elements of D

Not sufficient to uncover any of the columns of D: the identification
problem.

We need additional identifying restrictions.

In exactly identified systems, these restrictions are not testable.

In overidentified systems, these restrictions are testable.



Common are (combinations) of equality restrictions on

the impact matrix D,
i.e. the contemporaneous response to shocks

the inverse impact matrix D−1,
i.e. the linear contemporaneous relationship between zt .

the horizon h-impulse response coefficients MhD,
i.e. the response after h period

the infinite horizon cumulative impulse responses M(1)D,
i.e. the long run cumulative response to the shock

Subject to order and rank conditions for (local/global) identification
(See Rubio-Ramirez, Wagonner and Zha, 2010)

Note, this generally involves solving a system of nonlinear equations.



Recursive Identification Scheme

Zero restrictions on the impact matrix, lower triangular D:

D =


d11 0 . . . 0
d21 d22 . . . 0

...
...

. . . . . .
dn1 . . . . . . dnn


Adds n×(n−1)

2 restrictions such that all n2 elements of D are identified.

Easy computation through Cholesky decomposition of Σ, which factors
a positive semi-definite matrix P into the product of a lower triangular
matrices and its transpose Σ = DD′.



Partial Identification with Block-Recursive Scheme

Partition zt = [z1t , z2t , z3t ]
′ and et = [e1t , e2t , e3t ] and

consider the lower block triangular matrix

D =


d11

n1×n1
0

n1×1
0

n1×n2
d21
1×n1

d22
1×1

0
1×n2

d31
n2×n1

d32
n2×1

d33
n2×n2


Christiano, Eichenbaum & Evans (1999) show that

1. Many matrices D of the above form, one of which is the lower
triangular matrix, that satisfy Σ = DD ′.

2. Each of these has the same D2 and IR to e2t .

3. Using the Cholesky-identified D, column D2 and the IR to e2t are
invariant to the ordering of variables within z1t and z3t .



Long Run Restrictions

Suppose zt is in growth rates, then the long-run impact of et on levels is

∞∑
h=0

MhD = M(1)D

Common are zero restrictions on M(1)D,

e.g. Blanchard and Quah (1989), Shapiro and Watson (1988), King,
Plosser, Stock and Watson (1991), Gali (1999), Fisher (2006), Beaudry
and Portier (2006).

Easily implemented by lower triangularization M(1)ΣM(1)′ = LL′ and

D = M(1)−1L

Christiano, Eichenbaum & Evans (1999) results apply here as well.



Examples of Other Restrictions

Sign restrictions, i.e. inequality instead of equality restrictions.

Faust (1998), Uhlig (2005), Canova and De Nicoló (2002)

Medium run restrictions, i.e. on MhD

Uhlig (2004)

Maximization of the FEV contribution.

Barsky and Sims (2006), Francis, Owyang, Roush, and DeCecio
(2014)

Heteroskedastic covariance restrictions

Rigobon (2000), Sentana and Fiorentini JE (2001)



Instrumental Variables Approach

Identifying restrictions generate ‘instruments’.

The elements of D can also be obtained by IV methods.

IV estimation:
yt = βxt + ut , E [xtut ] 6= 0

Let wt be an ‘instrument’ for xt satisfying

E [wtxt ] 6= 0 (relevance)

E [wtut ] = 0 (exogeneity)

Two Stage Least Squares (2SLS):

1. First Stage: Regress xt on wt and obtain x̂t

2. Second Stage: Regress yt on x̂t to obtain consistent estimate of β



Example with Recursive Identification

Suppose

υ1t = d11e1t

υ2t = d21e1t + d22e2t

υ3t = d31e1t + d32e2t + d33e3t

IV implementation:

1. Obtain d11 as the square root of the first diagonal element of Σ.
Calculate e1t = d−111 υ1t .

2. Regress υ2t on υ1t using e1t as instrument to obtain d21. Obtain d22
from std(residual) and calculate e2t = d−222 (υ2t − d21e1t)

3. Regress υ3t on υ1t and υ2t using e1t and e2t as instruments to
obtain d31 and d32. Obtain d33 from std(residual).



Analogous for block recursive partial identification.

Analogous for long run zero restrictions, just replace υt by υ̃t = M(1)υt .

See Shapiro and Watson (1988)

Generally there is an equivalent IV implementation,

See Hausman and Taylor (1983).

For IV methods with inequalities, see Nevo and Rosen (2012)



Some Criticisms of Typical Identification Restrictions

Short-run restrictions based on timing assumptions that are often
hard to defend a priori.

See Rudebusch (1998), Stock and Watson (2001)

Long-run restrictions can be theoretically more appealing, but are
unreliable in realistic samples.

See Faust and Leeper (1997), Chari, Kehoe and McGrattan (2007),
Kascha and Mertens (2010)

Identified shocks seem often unrelated to known historical events.

See Rudebusch (1998)

Estimated innovations often based on insufficient information.

See Reichlin and Lippi (1994), Romer and Romer (2004), Ramey
(2011), Leeper, Walker and Yang (2013)



Event Study/Natural Experiment/Narrative Approach
A different approach to identification of causal effects is based on
analyzing historical events that are

(1) unexpected by economic decision makers

(2) unrelated by other disturbances affecting economic decisions

These properties of events are established using ‘narrative’ methods.

Potentially addresses the concerns with traditional restrictions.

Examples:

Monetary policy changes: Friedman and Schwartz (1963), Romer
and Romer (1989)

Oil price changes: Hamilton (1983), Hoover and Perez (1994)

Military spending changes: Ramey and Shapiro (1998), Edelberg,
Eichenbaum and Fisher (1999)

Tax reforms: Romer and Romer (2010), Cloyne (2012)



Narrative Identification in Time Series Models

Let mt be a scalar variable capturing the ‘events’ that satisfies

E [mtejt ] = φ 6= 0 (A1)

E [mte−jt ] = 0 (A2)

E [mt | It−1] = 0 (A3)

This means mt is assumed to be

correlated with the contemporaneous shock of interest (A1)
uncorrelated with other contemporaneous shocks (A2)
uncorrelated with any past shocks (A3).

Note: mt may be a discrete variable (e.g. dummies), may be censored, ...

φ is unknown ex ante.



Common specifications for uncovering IR’s to ejt up to a scale λ:

Distributed Lag Specification (motivated by MA representation)

zt = δ(L)mt + ut , δ(L) = δ0 + δ1L + δ2L
2 + δ3L

3 + ...

VAR-X (motivated by VARMA representation)

B(L)zt = δ(L)mt + ut

Augmented SVAR (simply treats mt as an observable)

B(L)

[
mt

zt

]
= ut

and identify IR to e1t block-recursively using Cholesky of Var(ut).



Some important remarks:

A1 is testable

A2 is not testable

A3 is testable

For the DL and VARX specifications, it is crucial that the ‘events’
are unpredictable, i.e. A3 must hold (but is testable).

For an Augmented SVAR with ‘adequate’ zt , A3 is not required.

Identification only up to a scale φ

In practice mt may satisfy A1-A3 but may be mismeasured ⇒
innovations to mt are uninterpretable without further assumptions.

Instead scale IR’s according to one of the outcome variables in zt
(for which measurement error is assumed to be small).



Proxy/External Instruments Approach

Mertens and Ravn (2013)

Interpret mt as a proxy measure of latent variable ejt .

Estimate conventional SVAR

B(L)zt = υt

and, assuming A1, impose covariance restrictions A2 to solve for Dj .

Easy to implement since A1 and A2 imply

Dj = E [υtmt ]/φ

and solve for the scale that is consistent with Σ = DD′.



Some advantages over previous specifications

No need to assume A3.

Parsimonious, no need to estimate VAR or DL coefficients on mt

which often has many missing observations.

Automatic scale adjustment, and robust to many types of
measurement error in mt .

Easy comparison with alternative identification restrictions since the
reduced form is the same.

We can use as proxy mt also the projection of narrative variables on
observables. This nest the augmented VAR case, but we may also
include observables not in zt .



Generalization to Multiple Shocks

Partition υt =

 υ1t
k×1
υ2t

n−k×1

, et =

 e1t
k×1
e2t

n−k×1

,

e1t are the shocks of interest.

Suppose we have k × 1 vector of proxy variables mt

Identification assumptions:

E [mte
′
1t ] = Φ (A1)

E [mte
′
2t ] = 0 (A2)

where Φ is k × k, unknown and nonsingular, but not necessarily diagonal.



Partition D =

 D11
k×k

D12
k×n−k

D21
n−k×k

D22
n−k×n−k

 , D1 =

 D11
k×k
D21

n−k×k


Assumptions A1/A2 imply n × k conditions

ΦD′1 = E [mtυ
′
t ]

from which we extract (n − k)× k covariance restrictions

D21 = (E [mtυ
′
1t ]
−1E [mtυ

′
2t ])
′D11

that can be used for identifying the first k columns.

These restrictions identify D21D11
−1.

An additional k(k − 1)/2 restrictions are needed to fully identify D1.

D21D11
−1 provides the impact matrix of e1t up to a rotation.



Implementation with IV

Stock and Watson (2008, 2012) develop the equivalent IV approach that
views mt as ‘external instruments’.

The RHS in

D21D11
−1 = (E [mtυ

′
1t ]
−1E [mtυ

′
2t ])
′

replaced with sample moments is just the 2SLS estimator of regression of
υ2t on υ1t using mt as instruments for υ1t .

Generalizing further : if available we can use more than k instruments for
k shocks and test for exogeneity of the instruments.



Implementation with IV

The approach is also equivalent to IV with observables directly:

1. First Stage: Regress z1t on mt and p lags of zt and obtain ẑ1t

2. Second Stage: Regress z2t on ẑ1t and p lags of zt

If k = 1, the IV estimates are the IR’s to e1t causing a unit innovation in
z1t .

If k > 1, combine with additional restrictions to obtain IR’s.

The first stage here can be used for diagnostics of instrument relevance
(assumption A1).

See also Stock and Montiel-Olea (WIP 2012).



Some Applications of Proxy/External Instrument VARs

Variety of Empirical Shock Measures: Stock and Watson (2012)

Model based shocks (wedges): Evans and Marshall (2009) (same
idea as Proxy SVAR)

Government Spending News: Ramey (2010) (Augm. SVAR)

Austerity Packages: Guajardo, Leigh and Pescatori (Augm.
SVAR/IV)

Tax Reforms: Romer and Romer (2010) (Augm. SVAR), Mertens
and Ravn (2013, 2014) and Mertens (2013)

High Freq. Monetary Shocks: Gertler and Karadi (2015), Passari
and Rey (2015)

Financial News/Variables: Brutti and Sauré (2015), Cesa-Bianchi,
Cespedes, and Rebucci (2015), Bahaj (2013), Davis (2014)

Oil Shocks: Stevens (2014)



Local Projections

So far, IR’s were obtained from the MA representation, for instance by
inverting a VAR.

IR’s are nonlinear functions of parameters, which complicates inference:

Delta method, Monte Carlo/bootstrap methods, Bayesian methods.

An alternative way to estimate IRFs is by local projections (Jordà 2004):

zt+h = Ch(L)zt + uht , for h > 0

where Ch(L) = C0h + C1hL + C2hL
2 + ...+ CphL

p.

Suppose we know Dj = ∂zt/∂ejt , then ∂E [zt+h | It ]/∂ejt = C0hDj



If we know Dj , we also know ejt , so equivalently

zt+h = Djhejt + uht , for h > 0

where ∂E [zt+h | It ]/∂ejt = Djh.

Iteratively estimates the coefficients of the MA representation.

This approach is

simple, univariate OLS regressions using HAC standard errors
(Just type ‘newey z e’ in Stata)

but inefficient compared to (inverting) a linear system that
generates the correct υt needed for identification

more robust to misspecification (lag length), but only conditional on
having the correct Dj or ejt .



Local Projections-IV

Suppose ejt is the shock of interest, but now unobserved.

Suppose we have variables mt satisfying

E [mtejt ] 6= 0 (A1)

E [mte−jt ] = 0 (A2)

E [mt | It−1] = 0 (A3)

First Stage:

zjt = δmt + uj0t , ẑjt = δmt

Second Stage:

z−jt = D−j0ẑjt + u−j0t

zt+h = Djhẑjt + uht , h > 0

D−j0 and Djh are the IR’s to ejt causing a unit innovation in z1t .



Local Projections-IV

We can drop assumption A3 if we have controls such that Et [mtuj0t ] = 0.

First Stage:

zjt = δmt + controlst + uj0t , ẑjt = δmt

Second Stage:

z−jt = D−j0ẑjt + controlst + u−j0t

zt+h = Djhẑjt + controlst + uht , h > 0

D−j0 and Djh are the IR’s to ejt causing a unit innovation in z1t .

Naturally, use the same controls required for υt = zt − E [zt | It−1].

With same controls, impact IR’s will be identical to proxy/external
instrument approach in linear system.

IR’s for h > 0 will be different.



LP is simple but inefficient.
But estimating linear systems is also not hard, so why do LP?

Simplicity becomes a major advantage in case of nonlinear models and
identification with (external) instruments.

Imagine general nonlinear impulse response function

zt = f (et , et−1, et−2, ...)

and (locally) approximate using your favorite expansion

zt ≈ linear terms + non-linear terms

It is straightforward to add nonlinear terms in et or zt to the LP.

Using IV, we never need to estimate the full nonlinear system to identify
the contemporaneous impact.

Of course in practice we need to worry about parameter proliferation.



Some Applications of LP-IV

Spending Shocks: Ramey and Zubairy (2014), Auerbach and
Gorodnichenko (2014), Bernardini and Peersman (2015)

High Freq. Monetary Shocks: Ramey (2015)

Tax Reforms: Ramey (2015)

Austerity: Jordà and Taylor (2015)



Some comments

External instruments greatly expands options for identification in
VARs and other models in combination with existing IV machinery.

Worry about assumption A1: instrument relevance

Worry about assumption A2: contemporaneous exogeneity

‘Narrative’ variables do not automatically buy you identification.

Worry about dropping assumption A3: adequate controlling

Use a proper conditioning set to capture innovations to
expectations.

LP-IV is an easy way to allow for (some) nonlinearities.

We should probably use more state space modeling.



Some general references on identification:

Christiano, Eichenbaum and Evans (1999), ‘Monetary Policy
Shocks: What have we learned and to what end?’

Stock and Watson, 2001, ‘Vector Autoregressions’

Luetkepohl, 2005, ‘A New Introduction to Time Series Analysis’

Ramey, 2015, ‘Macroeconomic Shocks and Their Propagation’


