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1.2 Identification Strategies

We have a dynamic model for E[z; | Z;—1] and we can measure
VUt = Zt — E[Zt | It—]_]-

The structural impulse response (IR) associated with e; are the
coefficients in the MA representation

[ee]
Zt = M(L)'Ut = ZM/Ut_,’ , Ut = DEt, MO = I
i=0
For shock j: 2EEl Bl — A, Dy
We can back out M}, , h > 0 from any of the reduced form models.

But to estimate the (average) dynamic causal effects OE [z | Z¢]/O€je
we also need to know Dj, i.e. column j of the impact matrix D.



We have estimates of v; and X, and we know that
Y = Var(De;) = DVar(e;)D' = DD’

Symmetric positive semi-definite X provides n x (n+ 1)/2 restrictions on
the n? elements of D

Not sufficient to uncover any of the columns of D: the identification
problem.

We need additional identifying restrictions.

In exactly identified systems, these restrictions are not testable.
In overidentified systems, these restrictions are testable.



Common are (combinations) of equality restrictions on

@ the impact matrix D,
i.e. the contemporaneous response to shocks

@ the inverse impact matrix DL,
i.e. the linear contemporaneous relationship between z;.

@ the horizon h-impulse response coefficients M D,
i.e. the response after h period

@ the infinite horizon cumulative impulse responses M(1)D,
i.e. the long run cumulative response to the shock

Subject to order and rank conditions for (local/global) identification
(See Rubio-Ramirez, Wagonner and Zha, 2010)

Note, this generally involves solving a system of nonlinear equations.



Recursive Identification Scheme

Zero restrictions on the impact matrix, lower triangular D:

d11 0 A 0

d21 d22 A 0
D = ) .

dn ... ... dpm

Adds w restrictions such that all n? elements of D are identified.

Easy computation through Cholesky decomposition of ¥, which factors
a positive semi-definite matrix P into the product of a lower triangular
matrices and its transpose ¥ = DD’.



Partial Identification with Block-Recursive Scheme

Partition z; = [z1¢, o, z3:]' and e; = [e1r, e, €3:] and
consider the lower block triangular matrix

di1 0 0
mxn MmXxX1l  nixn
D = 1xn  1x1 1xXm
dy  dyp  ds3

nyXny mx1l nmXxXn

Christiano, Eichenbaum & Evans (1999) show that

1.

Many matrices D of the above form, one of which is the lower
triangular matrix, that satisfy ¥ = DD’.

Each of these has the same D, and IR to e;.

Using the Cholesky-identified D, column D, and the IR to ey; are
invariant to the ordering of variables within z;; and z3;.



Long Run Restrictions
Suppose z; is in growth rates, then the long-run impact of e; on levels is
oo
> MyD = M(1)D
h=0

Common are zero restrictions on M(1)D,

e.g. Blanchard and Quah (1989), Shapiro and Watson (1988), King,
Plosser, Stock and Watson (1991), Gali (1999), Fisher (2006), Beaudry
and Portier (2006).

Easily implemented by lower triangularization M(1)XM(1)" = LL’ and
D=M(1)"'L

Christiano, Eichenbaum & Evans (1999) results apply here as well.



Examples of Other Restrictions

@ Sign restrictions, i.e. inequality instead of equality restrictions.
Faust (1998), Uhlig (2005), Canova and De Nicolé (2002)

@ Medium run restrictions, i.e. on M ;D
Uhlig (2004)

@ Maximization of the FEV contribution.

Barsky and Sims (2006), Francis, Owyang, Roush, and DeCecio
(2014)

@ Heteroskedastic covariance restrictions

Rigobon (2000), Sentana and Fiorentini JE (2001)



Instrumental Variables Approach

Identifying restrictions generate ‘instruments’.

The elements of D can also be obtained by IV methods.

IV estimation:
Ve =Bxe +ue E[Xtut] #0

Let w; be an ‘instrument’ for x; satisfying
E[wex:] #0 (relevance)
E[wiu] =0 (exogeneity)
Two Stage Least Squares (2SLS):
1. First Stage: Regress x; on w; and obtain X;

2. Second Stage: Regress y; on X; to obtain consistent estimate of 3



Example with Recursive ldentification

Suppose
vy = dner
Vo = dorere + dpen
v3r = d31€1+ + d3ep: + dizest

IV implementation:

1. Obtain dj; as the square root of the first diagonal element of X.
Calculate e;; = dl_llvlt.

2. Regress vp: on vy; using ey; as instrument to obtain db;. Obtain dxp
from std(residual) and calculate ey; = d2_2(’U2t — drert)

3. Regress vs; on vy and vy using er; and ey, as instruments to
obtain d3; and ds;. Obtain ds3 from std(residual).



Analogous for block recursive partial identification.

Analogous for long run zero restrictions, just replace vy by ¥ = M(1)v.
See Shapiro and Watson (1988)

Generally there is an equivalent IV implementation,
See Hausman and Taylor (1983).

For IV methods with inequalities, see Nevo and Rosen (2012)



Some Criticisms of Typical ldentification Restrictions

@ Short-run restrictions based on timing assumptions that are often
hard to defend a priori.

See Rudebusch (1998), Stock and Watson (2001)

@ Long-run restrictions can be theoretically more appealing, but are
unreliable in realistic samples.

See Faust and Leeper (1997), Chari, Kehoe and McGrattan (2007),
Kascha and Mertens (2010)

@ Identified shocks seem often unrelated to known historical events.
See Rudebusch (1998)
@ Estimated innovations often based on insufficient information.

See Reichlin and Lippi (1994), Romer and Romer (2004), Ramey
(2011), Leeper, Walker and Yang (2013)



Event Study/Natural Experiment/Narrative Approach

A different approach to identification of causal effects is based on
analyzing historical events that are

(1) unexpected by economic decision makers

(2) unrelated by other disturbances affecting economic decisions
These properties of events are established using ‘narrative’ methods.
Potentially addresses the concerns with traditional restrictions.
Examples:

@ Monetary policy changes: Friedman and Schwartz (1963), Romer
and Romer (1989)

@ Oil price changes: Hamilton (1983), Hoover and Perez (1994)

@ Military spending changes: Ramey and Shapiro (1998), Edelberg,
Eichenbaum and Fisher (1999)

@ Tax reforms: Romer and Romer (2010), Cloyne (2012)



Narrative Identification in Time Series Models

Let m; be a scalar variable capturing the ‘events’ that satisfies

E[miep] =9 #0 (A1)
E[mie_j] =0 (A2)
E[m: | Z;—1] =0 (A3)

This means m; is assumed to be

correlated with the contemporaneous shock of interest (A1)
uncorrelated with other contemporaneous shocks (A2)
uncorrelated with any past shocks (A3).

Note: m; may be a discrete variable (e.g. dummies), may be censored, ...

¢ is unknown ex ante.



Common specifications for uncovering IR’s to ej; up to a scale A:
Distributed Lag Specification (motivated by MA representation)
ze=06(L)m; +up , 8(L) = 6o+ 1L + 6oL + 5313 + ...
VAR-X (motivated by VARMA representation)
B(L)zy = 6(L)m; + uy

Augmented SVAR (simply treats m; as an observable)
me |
Bw| 7| -u

and identify IR to e;; block-recursively using Cholesky of Var(u).



Some important remarks:
@ Al is testable
@ A2 is not testable
@ A3 is testable

@ For the DL and VARX specifications, it is crucial that the ‘events’
are unpredictable, i.e. A3 must hold (but is testable).

@ For an Augmented SVAR with ‘adequate’ z;, A3 is not required.

@ Identification only up to a scale ¢

In practice m; may satisfy A1-A3 but may be mismeasured =
innovations to m; are uninterpretable without further assumptions.

Instead scale IR's according to one of the outcome variables in z;
(for which measurement error is assumed to be small).



Proxy/External Instruments Approach

Mertens and Ravn (2013)
Interpret m; as a proxy measure of latent variable ej;.

Estimate conventional SVAR
B(L)Zt = Ut

and, assuming Al, impose covariance restrictions A2 to solve for D/,

Easy to implement since Al and A2 imply
Dj = E[vem]/¢

and solve for the scale that is consistent with ¥ = DD’.



Some advantages over previous specifications

@ No need to assume A3.

@ Parsimonious, no need to estimate VAR or DL coefficients on m;
which often has many missing observations.

@ Automatic scale adjustment, and robust to many types of
measurement error in my.

@ Easy comparison with alternative identification restrictions since the
reduced form is the same.

@ We can use as proxy m; also the projection of narrative variables on
observables. This nest the augmented VAR case, but we may also
include observables not in z.



Generalization to Multiple Shocks

V1t €1t
Partition v; = kX1 e = kxi
V2t €2t
n—kx1 n—kx1

e1; are the shocks of interest.

Suppose we have k x 1 vector of proxy variables m;

Identification assumptions:

E[me;,] = @ (A1)
E[m.e;] =0 (A2)

where ® is k x k, unknown and nonsingular, but not necessarily diagonal.



D1 D1» D1
Partition D = kxk kxn—k , D1 = kxk

Doy Do Dy

n—kxk n—kxn—k n—kxk

Assumptions A1/A2 imply n X k conditions
¢D] = E[m,v}]
from which we extract (n — k) x k covariance restrictions
Dy = (E[mevy]) E[mev),]) Duy
that can be used for identifying the first k columns.
These restrictions identify Dy Dy~ .

An additional k(k — 1)/2 restrictions are needed to fully identify D;.

Dngn_l provides the impact matrix of e;; up to a rotation.



Implementation with IV

Stock and Watson (2008, 2012) develop the equivalent IV approach that
views m; as ‘external instruments’.

The RHS in
Dy D11t = (E[mev, ] E[mevs,])

replaced with sample moments is just the 2SLS estimator of regression of
g ON vy Using my as instruments for vy¢.

Generalizing further : if available we can use more than k instruments for
k shocks and test for exogeneity of the instruments.



Implementation with IV

The approach is also equivalent to IV with observables directly:

1. First Stage: Regress z;; on m; and p lags of z; and obtain 2y,

2. Second Stage: Regress z; on Z;; and p lags of z

If k =1, the IV estimates are the IR's to e;; causing a unit innovation in
Z1¢t-

If k > 1, combine with additional restrictions to obtain IR’s.

The first stage here can be used for diagnostics of instrument relevance
(assumption Al).

See also Stock and Montiel-Olea (WIP 2012).



Some Applications of Proxy/External Instrument VARs

@ Variety of Empirical Shock Measures: Stock and Watson (2012)

@ Model based shocks (wedges): Evans and Marshall (2009) (same
idea as Proxy SVAR)

@ Government Spending News: Ramey (2010) (Augm. SVAR)

o Austerity Packages: Guajardo, Leigh and Pescatori (Augm.
SVAR/IV)

@ Tax Reforms: Romer and Romer (2010) (Augm. SVAR), Mertens
and Ravn (2013, 2014) and Mertens (2013)

o High Freq. Monetary Shocks: Gertler and Karadi (2015), Passari
and Rey (2015)

@ Financial News/Variables: Brutti and Sauré (2015), Cesa-Bianchi,
Cespedes, and Rebucci (2015), Bahaj (2013), Davis (2014)

@ Oil Shocks: Stevens (2014)



Local Projections

So far, IR’s were obtained from the MA representation, for instance by
inverting a VAR.

IR's are nonlinear functions of parameters, which complicates inference:

Delta method, Monte Carlo/bootstrap methods, Bayesian methods.

An alternative way to estimate IRFs is by local projections (Jorda 2004):
ziyn = Cup(L)ze + upr , for h>0

where Ch(l_) = Con + Gipl + C2hl_2 + ...+ Cphl_p.
Suppose we know Dj = 0z;/0ejr, then OE|[zey 4 | I¢]/O€jr = ConD;



If we know D;, we also know ej, so equivalently
Zeyn = Djpep +upe , for h>0
where OE[z;1p | Z¢]/O€jr = Djp.
Iteratively estimates the coefficients of the MA representation.

This approach is

@ simple, univariate OLS regressions using HAC standard errors
(Just type ‘newey z e’ in Stata)

@ but inefficient compared to (inverting) a linear system that
generates the correct v; needed for identification

@ more robust to misspecification (lag length), but only conditional on
having the correct D; or ej:.



Local Projections-IV

Suppose ej; is the shock of interest, but now unobserved.

Suppose we have variables m; satisfying

E[m; [Z;-1] =0 (A3)
First Stage:
Zjt = 5mt+uj0t s 2t =dm;
Second Stage:
z_jy = D_joZir +u_jor
Zivn = DpZip+up , h>0

D_jo and Dj, are the IR's to e causing a unit innovation in zj;.



Local Projections-IV

We can drop assumption A3 if we have controls such that E.[m;ujo¢] = 0.
First Stage:
zp = Odmg+ controls; + ujor , Zjr = dmy
Second Stage:
z_jy = D_joZj + controls; + u_jo;
Zyyh = DjpZi + controls; + upe , h>0

D_jo and Dj, are the IR's to e causing a unit innovation in z;;.
Naturally, use the same controls required for v; = z; — E[z | Z;—1].

With same controls, impact IR's will be identical to proxy/external
instrument approach in linear system.

IR's for h > 0 will be different.



LP is simple but inefficient.
But estimating linear systems is also not hard, so why do LP?

Simplicity becomes a major advantage in case of nonlinear models and
identification with (external) instruments.

Imagine general nonlinear impulse response function
ze = f(er, -1, €2, ...)
and (locally) approximate using your favorite expansion
z; = linear terms + non-linear terms

It is straightforward to add nonlinear terms in e; or z; to the LP.

Using IV, we never need to estimate the full nonlinear system to identify
the contemporaneous impact.

Of course in practice we need to worry about parameter proliferation.



Some Applications of LP-1V

Spending Shocks: Ramey and Zubairy (2014), Auerbach and
Gorodnichenko (2014), Bernardini and Peersman (2015)

High Freq. Monetary Shocks: Ramey (2015)
Tax Reforms: Ramey (2015)
Austerity: Jorda and Taylor (2015)



Some comments

@ External instruments greatly expands options for identification in
VARs and other models in combination with existing IV machinery.

@ Worry about assumption Al: instrument relevance

@ Worry about assumption A2: contemporaneous exogeneity
‘Narrative' variables do not automatically buy you identification.

@ Worry about dropping assumption A3: adequate controlling

Use a proper conditioning set to capture innovations to
expectations.

@ LP-1V is an easy way to allow for (some) nonlinearities.

@ We should probably use more state space modeling.



Some general references on identification:

@ Christiano, Eichenbaum and Evans (1999), ‘Monetary Policy
Shocks: What have we learned and to what end?’

@ Stock and Watson, 2001, ‘Vector Autoregressions’
@ Luetkepohl, 2005, ‘A New Introduction to Time Series Analysis’

@ Ramey, 2015, ‘Macroeconomic Shocks and Their Propagation’



