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In God we trust, all others bring data.

William E. Deming (1900-1993)

Angrist and Pischke are Mad About Macro

(2010 JEP, The Credibility Revolution in Empirical Economics: How
Better Research Design Is Taking the Con out of Econometrics)

Sims, JEP 2010, Comment on Angrist and Pischke: But economics is not
an experimental science
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1. Estimating the Effects of Shocks Without Much Theory

General Approach:

1. Using observables z, fit a model of expectations E[z; | Z;_1]
2. ldentify meaningful shocks from innovations z; — E[z; | Z¢—1].

3. Estimate dynamic causal effects of shocks/variance contributions.

Z;: information available to economic decision makers at time t.



1.1 Structural Time Series Models

State Space (SS) Representation

The solution of stationary linear models can generally be written as

ss = Gsi_1+ Fe
zz = Asi_1+De

s; is a m x 1 vector of state variables
er11 is an | x 1 vector of uncorrelated white noise, or structural shocks

Ele)] =0, Elere;] =1, Eleel]] =0fors#t

z; is an n x 1 vector of variables of interest
Gismxm, FismxI Aisnx mand Disnx |



Stability and Stationarity

The m x m matrix G has all eigenvalues less than one in modulus, i.e.
@ det(M — AlI) # 0 for | A |> 1, or equivalently
@ det(/ — Mz)#0for|z|<1

st follows a stable VAR(1) process

s; and z; are stationary stochastic processes, i.e. the first and second
moments are time invariant.



Lag Operator

Define the lag operator L, i.e. LKx; = x¢_y.

st = Gsi_1+ Fe
(I—Gl)s, = Fe,
St = (/ - gL)_l]:et

o0
St = g G'Fer;
i=0




Time Series Representations

Moving Average (MA) Representation
q
MA(q) :  z=M(Lwv: = ZM,’Ut,;
i=0
where M(L) = Mg+ MiL+ ... + MyL9 and innovations process v;
E[v]=0, E[vo]] =X, E[vpvl] =0fors#t

Wold Representation Theorem
Every stationary process z; can be written as an MA(c0).
(plus deterministic terms).



Stationary linear models for z; and e; can always be written as MA(c0)

oo
2 = M (LDe=>» Mie.;

i=0

Given an SS representation {G, F, A, D},

Zr = Z-Agi_l}-et—i + De;
i=1
= A(l - GL) ' Fe;_1 + De;
(D+A(l —GL) ' FL) e

such that M = D and M} = AG'~1F for i > 1



Assume n = | and Stochastic Nonsingularity:
D is an n X n invertible matrix.

We can write a ‘structural’ MA

(oo}
7z = M(Lve=Y My,
i=0
with v; = De; , Y =DD' , Mo =1

Zt

(I+A(l = GL) ' FD L) v,
such that M; = AG—1FD~ ! for i > 1



Time Series Representations

Vector Autoregressive Moving Average Representation

VARMA(p,q) : B(L)zy = M(L)v,
where

B(L) = I—-Bil—..—B,LP
M(L) = Mo+ ML+ ...+ Mgl

E[v]=0, E[vo]] =X, E[vpvl] =0fors#t



Starting from the MA representation of our linear models,
zz = A(l —GL) 'Fe_1 + De;
Suppose n = m and A is invertible,

A7tz = (I-GL) ' Fei1 + A 'De
(I - GL)A 'z, = Fer 1+ (I —GL)A 'De,

Assuming D invertible we obtain a structural VARMA(1,1),
Zy = AgA_lzt_]_ + VUt — ./4 (g — .FD_IA) A_l’Ut_l
'Structural’ here means

VU = Det



Time Series Representations

Vector Autoregressive Representation

VAR(p) : B(L)zz=wv;
= Zy = Blzt_]_ + ...+ szt—p + V¢

where
B(L) = | —BiL—..—Bpl?

E[v]=0, E[vu]] =X, E[vpwl] =0fors #t



Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007):
Start from the SS representation of our models,

s = Gsi_1+ Fe
zz = Asi_1+De

Assume n = | and Stochastic Nonsingularity:

D is an n x n invertible matrix.

When D is nonsingular,

e = D_l(zt—Ast_l)



Substituting

ss = (G—FD 'A)si_1+FD 'z

Invertibility (in the Past):
The eigenvalues of G — FD~1 A are strictly less then one in modulus.

Under this condition we can write

s = > (G-FD'A) FD 'z

i=0



Substituting

z = Y A(G-FD'A) T FD 2 + De,

i=1

such that
Bi=A(G—FDA) ' FD!
VUt = Det

In practice, lag truncation: z, = Zf’zl Bizi_i + v
Stochastic Nonsingularity: No big deal (measurement errors)

Invertibility (in the Past): Choice of z is important!
If the invertibility condition does not hold and we estimate a VAR:

vt # Dey



Alternatively, start from the MA representation
zy = M(L)v,
or VARMA representation
B(L)z; = M(L)v,

and invert M(L) to obtain a VAR representation.

(Note: it is assumed that M(L) is a square matrix of rational functions.)



S(L)B(L)z: = S(LYM(L)v,

M(L) is invertible in the past,

i.e. there is an S(L) such that S(L)M(L) = I and S(L) only has
nonnegative powers of L,

if det(M(L)) #0 for | L |< 1.

See Hansen and Sargent (1980, 1991), Lippi and Reichlin (1993), Forni
and Gambetti (2014)



MA representation of our models:
zz = (I+A(/-GLy ' FD L) v,

Using the matrix determinant lemma,
det (I + A(l —GL)"'FD~'L) = det (I — (G — FD ' A)L) /det(l — GL)
The condition that

det (I —(G—FD tA)L) #0for | L|<1
is equivalent to

det (G —FD 'A)—Iz) #0 for | z |> 1

or G — FD~1 A must have all eigenvalues strictly less then one in
modulus (same as Fernandez-Villaverde et al. 2007).



VARMA representation of our models:
(I-=AGA™ )z, = (I-A(G—-FD 'A) A L) v,y
The condition that
det (I — A(G—FD'A) A7) #£0for | L|<1
is equivalent to
det ((G— FD ' A) —lz) #0for |z |> 1

or G — FD7' A must have all eigenvalues strictly less then one in
modulus (same as Fernandez-Villaverde et al. 2007).



Example: New Keynesian Model

See Clarida, Gali and Gertler (1999) and the Woodford (2003) and Gali
(2008) books

EAYER = ¢pme — Exmess — uy (Eq. Euler)
e = KPP + BEmei1 — v (Phillips curve)
where Kk >0, ¢, >1,0< 3 <1

y£% : output gap, m : inflation

Vv¢: cost push shocks
uy: other shocks (technology, govt spending, taxes, monetary policy,...)

uy and v; are stationary exogenous processes



lterating forward,

o Y ' Upsi
[ i ] = EtZC‘(Jﬂ) [ " }
Tt ' .
j=0
where
cl = 1

L 1B
1t or | £ Btr
Note C~1 has eigenvalues strictly less than one in modulus. @I




Suppose the shocks follow a VAR(1) process.

Vi N~~~ Vi—1 ~~
~— g F

St
~gap
Yt
Tt

Zt

o0
Zc—(jﬂ)/\j Uy
j=0 vt

Cc-nN" /\{ et ] +(C =N Qe

Vi-1

St—1

Note that G — FD 1A = 0.



State Space representation:

] - alvn ]

Ve Vi-1
}A’gap -1 Ug—1
[ ¢ ] (C—N) A[ }—F(C Nt Qe

Tt Vi—

Moving Average Representation
Agap
[ ] Z(C N A Qe

VAR/VARMA Representation

~gap

Vfgap ] —(C=N)TAC—A) [ Vo1

Tt Tt—1

] +(C =N Qe



Reduced Form Parameters

SS s, =Gsi 1+ Huy G AH X

zp = As;_1 + vy
MA(q) : z = M(L)v: M, X
VARMA(p,q) : B(L)zy = M(L)v; Bi, M;, X
VAR(p) : B(L)z: = v: Bi, X

where Efv] =0, Efvevy] =%, Efvev] =0fors#t

Note: SS, MA and VARMA require additional normalizations.

When well-specified, these are all models that allow us to separate
expectations E[z; | Z;_1] and innovations v; = z; — E[z; | Z;—1].



Estimation of Reduced Form Parameters

» VAR estimation

Some references:

Hamilton, 1994, 'Time Series Analysis’

Luetkepohl, 2005, ‘A New Introduction to Time Series Analysis’
Brockwell and Davis, 2006, Time Series: Theory and Methods’
Aoki, 1990, ‘State Space Modeling of Time Series’

@ Durbin and Koopman, 2012, ‘Time Series Analysis by State Space
Methods'



Local Uniquess

In matrix form

[ = o[ -[ %] e=dhe At

Tet1 Tt Vi /B —K 1
The companion matrix C has the characteristic polynomial

Pp) = > —1tr(C)p + det(C)
tr(C) 1+1/84+k/8>1
det(C) = (1+kox)/B8>1

which has roots outside the unit circle if tr(C) < 1 + det(C) or
Gn>1 (Taylor Principle)



Estimating a VAR

Sample of T + p observations of an n x 1 vector z:
{zt—p+1, Zt—pt2, -, ZT-1, 2T}
Define the n x T matrix z such that:
z= [zl zZ - zT]

Define a np x 1 vector Z;:

Zt—1

Zt—2

Zi_p
Let Z be a np x T matrix collecting T observations of Z;:

Z=[z 2 - Z)



Let v be a n x T matrix of n x 1 residuals v;:
’U:[’Ul Uy = ’UT]
Let B be a n x np matrix of coefficients:
B = [Bl B, --- Bp]
Introduce the vectorization operator:

z = vec(z)

u = vec(v)

Where z is a nT x 1 vector of the stacked columns of z. The
variance-covariance matrix of u is:

Var(v) =X =1r X%



Generalized Least Squares

Re-write the reduced form VAR(p) as:
z=BZ+u
Or as:
z=(Z'®1,)8+u

Where ® is the Kronecker product. We can estimate 8 with Generalized
Least Squares (GLS):
UElu=(z— (Z@L,)B)Ez—(Z ®1,)B)
=¥ 248 (Z@ 1) Z @ 1,)8-28(Z® 1,)X 'z
=Z(lr @YX N2+ (ZZ oL B -28(Z2 L)z



First order condition:
222 L Y -2(Z0L Hz=0
The GLS estimator is therefore:
B=((22)1Z® )z

This is the same as OLS or ML.

Asymptotic normality:
VT(B-8) % N(O,T o)

where I = plimZZ’/ T and the estimators are

. Z7
r:
T
& 1 / N\—1 /
Z—T_np_lz(lr 7'(22')'2)z



