

Bonn Summer School Advances in Empirical Macroeconomics

Karel Mertens

Cornell, NBER, CEPR

Bonn, June 2015

In God we trust, all others bring data.

William E. Deming (1900-1993)

Angrist and Pischke are Mad About Macro

(2010 JEP, The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics)

Sims, JEP 2010, Comment on Angrist and Pischke: But economics is not an experimental science

Overview

1. Estimating the Effects of Shocks Without Much Theory
 - 1.1 Structural Time Series Models
 - 1.2 Identification Strategies
2. Applications to Fiscal Shocks
 - 2.1 Tax Policy Shocks
 - 2.2 Government Spending Shocks
 - 2.3 Austerity Measures
3. Two Difficulties in Interpreting SVARs
 - 3.1 Noninvertibility
 - 3.2 Time Aggregation
4. Systematic Tax Policy and the ZLB

1. Estimating the Effects of Shocks Without Much Theory

General Approach:

1. Using observables z_t , fit a model of expectations $E[z_t | \mathcal{I}_{t-1}]$
2. Identify meaningful shocks from innovations $z_t - E[z_t | \mathcal{I}_{t-1}]$.
3. Estimate dynamic causal effects of shocks/variance contributions.

\mathcal{I}_t : information available to economic decision makers at time t .

1.1 Structural Time Series Models

State Space (SS) Representation

The solution of stationary linear models can generally be written as

$$\begin{aligned}s_t &= \mathcal{G}s_{t-1} + \mathcal{F}e_t \\z_t &= \mathcal{A}s_{t-1} + \mathcal{D}e_t\end{aligned}$$

s_t is a $m \times 1$ vector of state variables

e_{t+1} is an $l \times 1$ vector of uncorrelated white noise, or **structural shocks**

$$E[e_t] = 0, \quad E[e_t e_t'] = I, \quad E[e_t e_s'] = 0 \text{ for } s \neq t$$

z_t is an $n \times 1$ vector of variables of interest

\mathcal{G} is $m \times m$, \mathcal{F} is $m \times l$, \mathcal{A} is $n \times m$ and \mathcal{D} is $n \times l$

Stability and Stationarity

The $m \times m$ matrix \mathcal{G} has all eigenvalues less than one in modulus, i.e.

- $\det(M - \lambda I) \neq 0$ for $|\lambda| \geq 1$, or equivalently
- $\det(I - Mz) \neq 0$ for $|z| \leq 1$

s_t follows a stable VAR(1) process

s_t and z_t are **stationary stochastic processes**, i.e. the first and second moments are time invariant.

Lag Operator

Define the lag operator L , i.e. $L^k x_t = x_{t-k}$.

$$\begin{aligned}s_t &= \mathcal{G}s_{t-1} + \mathcal{F}e_t \\(I - \mathcal{G}L)s_t &= \mathcal{F}e_t \\s_t &= (I - \mathcal{G}L)^{-1}\mathcal{F}e_t \\s_t &= \sum_{i=0}^{\infty} \mathcal{G}^i \mathcal{F}e_{t-i}\end{aligned}$$

Time Series Representations

Moving Average (MA) Representation

$$\text{MA}(q) \quad : \quad z_t = M(L)v_t = \sum_{i=0}^q \mathcal{M}_i v_{t-i}$$

where $M(L) = \mathcal{M}_0 + \mathcal{M}_1 L + \dots + \mathcal{M}_q L^q$ and innovations process v_t

$$E[v_t] = 0, \quad E[v_t v_t'] = \Sigma, \quad E[v_t v_s'] = 0 \text{ for } s \neq t$$

Wold Representation Theorem

Every stationary process z_t can be written as an $MA(\infty)$.
(plus deterministic terms).

Stationary linear models for z_t and e_t can always be written as $MA(\infty)$

$$z_t = M^*(L)e_t = \sum_{i=0}^{\infty} \mathcal{M}_i^* e_{t-i}$$

Given an SS representation $\{\mathcal{G}, \mathcal{F}, \mathcal{A}, \mathcal{D}\}$,

$$\begin{aligned} z_t &= \sum_{i=1}^{\infty} \mathcal{A}\mathcal{G}^{i-1}\mathcal{F}e_{t-i} + \mathcal{D}e_t \\ &= \mathcal{A}(I - \mathcal{G}L)^{-1}\mathcal{F}e_{t-1} + \mathcal{D}e_t \\ &= (\mathcal{D} + \mathcal{A}(I - \mathcal{G}L)^{-1}\mathcal{F}L) e_t \end{aligned}$$

such that $\mathcal{M}_0^* = \mathcal{D}$ and $\mathcal{M}_i^* = \mathcal{A}\mathcal{G}^{i-1}\mathcal{F}$ for $i \geq 1$

Assume $n = l$ and **Stochastic Nonsingularity**:

\mathcal{D} is an $n \times n$ invertible matrix.

We can write a 'structural' MA

$$z_t = M(L)v_t = \sum_{i=0}^{\infty} \mathcal{M}_i v_{t-i}$$

with $v_t = \mathcal{D}e_t$, $\Sigma = \mathcal{D}\mathcal{D}'$, $\mathcal{M}_0 = I$

$$z_t = (I + \mathcal{A}(I - \mathcal{G}L)^{-1}\mathcal{F}\mathcal{D}^{-1}L) v_t$$

such that $\mathcal{M}_i = \mathcal{A}\mathcal{G}^{i-1}\mathcal{F}\mathcal{D}^{-1}$ for $i \geq 1$

Time Series Representations

Vector Autoregressive Moving Average Representation

$$\text{VARMA}(p,q) \quad : \quad B(L)z_t = M(L)v_t$$

where

$$B(L) = I - \mathcal{B}_1 L - \dots - \mathcal{B}_p L^p$$

$$M(L) = \mathcal{M}_0 + \mathcal{M}_1 L + \dots + \mathcal{M}_q L^q$$

$$E[v_t] = 0, \quad E[v_t v_t'] = \Sigma, \quad E[v_t v_s'] = 0 \text{ for } s \neq t$$

Starting from the MA representation of our linear models,

$$z_t = \mathcal{A}(I - \mathcal{G}L)^{-1} \mathcal{F}e_{t-1} + \mathcal{D}e_t$$

Suppose $\mathbf{n} = \mathbf{m}$ and \mathcal{A} is invertible,

$$\begin{aligned}\mathcal{A}^{-1}z_t &= (I - \mathcal{G}L)^{-1} \mathcal{F}e_{t-1} + \mathcal{A}^{-1}\mathcal{D}e_t \\ (I - \mathcal{G}L)\mathcal{A}^{-1}z_t &= \mathcal{F}e_{t-1} + (I - \mathcal{G}L)\mathcal{A}^{-1}\mathcal{D}e_t\end{aligned}$$

Assuming \mathcal{D} invertible we obtain a structural VARMA(1,1),

$$z_t = \mathcal{A}\mathcal{G}\mathcal{A}^{-1}z_{t-1} + v_t - \mathcal{A}(\mathcal{G} - \mathcal{F}\mathcal{D}^{-1}\mathcal{A})\mathcal{A}^{-1}v_{t-1}$$

'Structural' here means

$$v_t = \mathcal{D}e_t$$

Time Series Representations

Vector Autoregressive Representation

$$\begin{aligned}\text{VAR}(p) \quad : \quad B(L)z_t &= v_t \\ \Rightarrow z_t &= \mathcal{B}_1 z_{t-1} + \dots + \mathcal{B}_p z_{t-p} + v_t\end{aligned}$$

where

$$B(L) = I - \mathcal{B}_1 L - \dots - \mathcal{B}_p L^p$$

$$E[v_t] = 0, \quad E[v_t v_t'] = \Sigma, \quad E[v_t v_s'] = 0 \text{ for } s \neq t$$

Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007):

Start from the SS representation of our models,

$$\begin{aligned}s_t &= \mathcal{G}s_{t-1} + \mathcal{F}e_t \\ z_t &= \mathcal{A}s_{t-1} + \mathcal{D}e_t\end{aligned}$$

Assume $n = l$ and **Stochastic Nonsingularity**:

\mathcal{D} is an $n \times n$ invertible matrix.

When \mathcal{D} is nonsingular,

$$e_t = \mathcal{D}^{-1}(z_t - \mathcal{A}s_{t-1})$$

Substituting

$$s_t = (\mathcal{G} - \mathcal{F}\mathcal{D}^{-1}\mathcal{A})s_{t-1} + \mathcal{F}\mathcal{D}^{-1}z_t$$

Invertibility (in the Past):

The eigenvalues of $\mathcal{G} - \mathcal{F}\mathcal{D}^{-1}\mathcal{A}$ are strictly less than one in modulus.

Under this condition we can write

$$s_t = \sum_{i=0}^{\infty} (\mathcal{G} - \mathcal{F}\mathcal{D}^{-1}\mathcal{A})^i \mathcal{F}\mathcal{D}^{-1}z_{t-i}$$

Substituting

$$z_t = \sum_{i=1}^{\infty} \mathcal{A} (\mathcal{G} - \mathcal{F} \mathcal{D}^{-1} \mathcal{A})^{i-1} \mathcal{F} \mathcal{D}^{-1} z_{t-i} + \mathcal{D} e_t$$

such that

$$\mathcal{B}_i = \mathcal{A} (\mathcal{G} - \mathcal{F} \mathcal{D}^{-1} \mathcal{A})^{i-1} \mathcal{F} \mathcal{D}^{-1}$$

$$v_t = \mathcal{D} e_t$$

In practice, lag truncation: $z_t = \sum_{i=1}^p \mathcal{B}_i z_{t-i} + v_t$

Stochastic Nonsingularity: No big deal (measurement errors)

Invertibility (in the Past): Choice of z_t is important!

If the invertibility condition does not hold and we estimate a VAR:

$$v_t \neq \mathcal{D} e_t$$

Alternatively, start from the MA representation

$$z_t = M(L)v_t$$

or VARMA representation

$$B(L)z_t = M(L)v_t$$

and invert $M(L)$ to obtain a VAR representation.

(Note: it is assumed that $M(L)$ is a square matrix of rational functions.)

$$S(L)B(L)z_t = S(L)M(L)v_t$$

$M(L)$ is **invertible in the past**,

i.e. there is an $S(L)$ such that $S(L)M(L) = I$ and $S(L)$ only has nonnegative powers of L ,

if $\det(M(L)) \neq 0$ for $|L| \leq 1$.

See Hansen and Sargent (1980, 1991), Lippi and Reichlin (1993), Forni and Gambetti (2014)

MA representation of our models:

$$z_t = (I + \mathcal{A}(I - \mathcal{G}L)^{-1}\mathcal{F}\mathcal{D}^{-1}L) v_t$$

Using the matrix determinant lemma,

$$\det(I + \mathcal{A}(I - \mathcal{G}L)^{-1}\mathcal{F}\mathcal{D}^{-1}L) = \det(I - (\mathcal{G} - \mathcal{F}\mathcal{D}^{-1}\mathcal{A})L) / \det(I - \mathcal{G}L)$$

The condition that

$$\det(I - (\mathcal{G} - \mathcal{F}\mathcal{D}^{-1}\mathcal{A})L) \neq 0 \text{ for } |L| \leq 1$$

is equivalent to

$$\det((\mathcal{G} - \mathcal{F}\mathcal{D}^{-1}\mathcal{A}) - Iz) \neq 0 \text{ for } |z| \geq 1$$

or $\mathcal{G} - \mathcal{F}\mathcal{D}^{-1}\mathcal{A}$ must have all eigenvalues strictly less than one in modulus (same as Fernandez-Villaverde et al. 2007).

VARMA representation of our models:

$$(I - \mathcal{A}\mathcal{G}\mathcal{A}^{-1}L)z_t = (I - \mathcal{A}(\mathcal{G} - \mathcal{F}\mathcal{D}^{-1}\mathcal{A})\mathcal{A}^{-1}L)v_{t-1}$$

The condition that

$$\det(I - \mathcal{A}(\mathcal{G} - \mathcal{F}\mathcal{D}^{-1}\mathcal{A})\mathcal{A}^{-1}L) \neq 0 \text{ for } |L| \leq 1$$

is equivalent to

$$\det((\mathcal{G} - \mathcal{F}\mathcal{D}^{-1}\mathcal{A}) - Iz) \neq 0 \text{ for } |z| \geq 1$$

or $\mathcal{G} - \mathcal{F}\mathcal{D}^{-1}\mathcal{A}$ must have all eigenvalues strictly less than one in modulus (same as Fernandez-Villaverde et al. 2007).

Example: New Keynesian Model

See Clarida, Gali and Gertler (1999) and the Woodford (2003) and Gali (2008) books

$$\begin{aligned} E_t \Delta \hat{y}_{t+1}^{\text{gap}} &= \phi_\pi \pi_t - E_t \pi_{t+1} - u_t && \text{(Eq. Euler)} \\ \pi_t &= \kappa \hat{y}_t^{\text{gap}} + \beta E_t \pi_{t+1} - v_t && \text{(Phillips curve)} \end{aligned}$$

where $\kappa > 0$, $\phi_\pi > 1$, $0 \leq \beta < 1$

y_t^{gap} : output gap , π_t : inflation

v_t : cost push shocks

u_t : other shocks (technology, govt spending, taxes, monetary policy,...)

u_t and v_t are stationary exogenous processes

Iterating forward,

$$\begin{bmatrix} \hat{y}_t^{gap} \\ \pi_t \end{bmatrix} = E_t \sum_{j=0}^{\infty} \mathcal{C}^{-(j+1)} \begin{bmatrix} u_{t+j} \\ v_{t+j} \end{bmatrix}$$

where

$$\mathcal{C}^{-1} = \frac{1}{1 + \phi_{\pi} \kappa} \begin{bmatrix} 1 & 1 - \beta \phi_{\pi} \\ \kappa & \beta + \kappa \end{bmatrix}$$

Note \mathcal{C}^{-1} has eigenvalues strictly less than one in modulus.

▶ Why?

Suppose the shocks follow a VAR(1) process.

$$\underbrace{\begin{bmatrix} u_t \\ v_t \end{bmatrix}}_{s_t} = \underbrace{\Lambda}_{\mathcal{G}} \begin{bmatrix} u_{t-1} \\ v_{t-1} \end{bmatrix} + \underbrace{\Omega}_{\mathcal{F}} e_t$$

$$\begin{aligned} \underbrace{\begin{bmatrix} \hat{y}_t^{gap} \\ \pi_t \end{bmatrix}}_{z_t} &= \sum_{j=0}^{\infty} \mathcal{C}^{-(j+1)} \Lambda^j \begin{bmatrix} u_t \\ v_t \end{bmatrix} \\ &= \underbrace{(\mathcal{C} - \Lambda)^{-1} \Lambda}_{\mathcal{A}} \underbrace{\begin{bmatrix} u_{t-1} \\ v_{t-1} \end{bmatrix}}_{s_{t-1}} + \underbrace{(\mathcal{C} - \Lambda)^{-1} \Omega}_{\mathcal{D}} e_t \end{aligned}$$

Note that $\mathcal{G} - \mathcal{F}\mathcal{D}^{-1}\mathcal{A} = 0$.

State Space representation:

$$\begin{bmatrix} u_t \\ v_t \end{bmatrix} = \Lambda \begin{bmatrix} u_{t-1} \\ v_{t-1} \end{bmatrix} + \Omega e_t$$
$$\begin{bmatrix} \hat{y}_t^{gap} \\ \pi_t \end{bmatrix} = (\mathcal{C} - \Lambda)^{-1} \Lambda \begin{bmatrix} u_{t-1} \\ v_{t-1} \end{bmatrix} + (\mathcal{C} - \Lambda)^{-1} \Omega e_t$$

Moving Average Representation

$$\begin{bmatrix} \hat{y}_t^{gap} \\ \pi_t \end{bmatrix} = \sum_{i=0}^{\infty} (\mathcal{C} - \Lambda)^{-1} \Lambda^i \Omega e_{t-i}$$

VAR/VARMA Representation

$$\begin{bmatrix} \hat{y}_t^{gap} \\ \pi_t \end{bmatrix} = (\mathcal{C} - \Lambda)^{-1} \Lambda (\mathcal{C} - \Lambda) \begin{bmatrix} \hat{y}_{t-1}^{gap} \\ \pi_{t-1} \end{bmatrix} + (\mathcal{C} - \Lambda)^{-1} \Omega e_t$$

Reduced Form Parameters

$$SS : s_t = \mathcal{G}s_{t-1} + \mathcal{H}v_t \quad \mathcal{G}, \mathcal{A}, \mathcal{H}, \Sigma$$

$$z_t = \mathcal{A}s_{t-1} + v_t$$

$$MA(q) : z_t = M(L)v_t \quad \mathcal{M}_i, \Sigma$$

$$VARMA(p,q) : B(L)z_t = M(L)v_t \quad \mathcal{B}_i, \mathcal{M}_i, \Sigma$$

$$VAR(p) : B(L)z_t = v_t \quad \mathcal{B}_i, \Sigma$$

where $E[v_t] = 0$, $E[v_t v_t'] = \Sigma$, $E[v_t v_s'] = 0$ for $s \neq t$

Note: SS, MA and VARMA require additional normalizations.

When well-specified, these are all models that allow us to separate expectations $E[z_t | \mathcal{I}_{t-1}]$ and innovations $v_t = z_t - E[z_t | \mathcal{I}_{t-1}]$.

Estimation of Reduced Form Parameters

▶ VAR estimation

Some references:

- Hamilton, 1994, 'Time Series Analysis'
- Luetkepohl, 2005, 'A New Introduction to Time Series Analysis'
- Brockwell and Davis, 2006, 'Time Series: Theory and Methods'
- Aoki, 1990, 'State Space Modeling of Time Series'
- Durbin and Koopman, 2012, 'Time Series Analysis by State Space Methods'

Local Uniqueness

In matrix form

$$E_t \begin{bmatrix} \hat{y}_{t+1}^{gap} \\ \pi_{t+1} \end{bmatrix} = \mathcal{C} \begin{bmatrix} \hat{y}_t^{gap} \\ \pi_t \end{bmatrix} - \begin{bmatrix} u_t \\ v_t \end{bmatrix}, \quad \mathcal{C} \equiv \frac{1}{\beta} \begin{bmatrix} \beta + \kappa & \beta\phi_\pi - 1 \\ -\kappa & 1 \end{bmatrix}$$

The companion matrix \mathcal{C} has the characteristic polynomial

$$\mathcal{P}(\varphi) = \varphi^2 - \text{tr}(\mathcal{C})\varphi + \det(\mathcal{C})$$

$$\text{tr}(\mathcal{C}) = 1 + 1/\beta + \kappa/\beta > 1$$

$$\det(\mathcal{C}) = (1 + \kappa\phi_\pi)/\beta > 1$$

which has roots outside the unit circle if $\text{tr}(\mathcal{C}) < 1 + \det(\mathcal{C})$ or

$$\phi_\pi > 1 \quad (\text{Taylor Principle})$$

▶ Back

Estimating a VAR

Sample of $T + p$ observations of an $n \times 1$ vector z_t :

$$\{z_{t-p+1}, z_{t-p+2}, \dots, z_{T-1}, z_T\}$$

Define the $n \times T$ matrix z such that:

$$z = [z_1 \quad z_2 \quad \cdots \quad z_T]$$

Define a $np \times 1$ vector Z_t :

$$Z_t = \begin{bmatrix} z_{t-1} \\ z_{t-2} \\ \vdots \\ z_{t-p} \end{bmatrix}$$

Let Z be a $np \times T$ matrix collecting T observations of Z_t :

$$Z = [Z_1 \quad Z_2 \quad \cdots \quad Z_p]$$

Let v be a $n \times T$ matrix of $n \times 1$ residuals v_t :

$$v = [v_1 \quad v_2 \quad \cdots \quad v_T]$$

Let B be a $n \times np$ matrix of coefficients:

$$B = [B_1 \quad B_2 \quad \cdots \quad B_p]$$

Introduce the vectorization operator:

$$\mathbf{z} = \text{vec}(z)$$

$$\mathbf{u} = \text{vec}(v)$$

Where \mathbf{z} is a $nT \times 1$ vector of the stacked columns of z . The variance-covariance matrix of \mathbf{u} is:

$$\text{Var}(v) \equiv \boldsymbol{\Sigma} = I_T \otimes \Sigma$$

Generalized Least Squares

Re-write the reduced form VAR(p) as:

$$\mathbf{z} = B\mathbf{Z} + \mathbf{u}$$

Or as:

$$\mathbf{z} = (\mathbf{Z}' \otimes I_n)\beta + \mathbf{u}$$

Where \otimes is the Kronecker product. We can estimate β with Generalized Least Squares (GLS):

$$\begin{aligned}\mathbf{u}'\Sigma^{-1}\mathbf{u} &= (\mathbf{z} - (\mathbf{Z}' \otimes I_n)\beta)' \Sigma^{-1} (\mathbf{z} - (\mathbf{Z}' \otimes I_n)\beta) \\ &= \mathbf{z}'\Sigma^{-1}\mathbf{z} + \beta'(\mathbf{Z}' \otimes I_n)\Sigma^{-1}(\mathbf{Z}' \otimes I_n)\beta - 2\beta'(\mathbf{Z}' \otimes I_n)\Sigma^{-1}\mathbf{z} \\ &= \mathbf{z}'(I_T \otimes \Sigma^{-1})\mathbf{z} + \beta'(Z Z' \otimes \Sigma^{-1})\beta - 2\beta'(Z \otimes \Sigma^{-1})\mathbf{z}\end{aligned}$$

First order condition:

$$2(ZZ' \otimes \Sigma^{-1})\beta - 2(Z \otimes \Sigma^{-1})\mathbf{z} = 0$$

The GLS estimator is therefore:

$$\hat{\beta} = ((ZZ')^{-1}Z \otimes I_n)\mathbf{z}$$

This is the same as OLS or ML.

Asymptotic normality:

$$\sqrt{T}(\hat{\beta} - \beta) \xrightarrow{d} \mathcal{N}(0, \Gamma^{-1} \otimes \Sigma)$$

where $\Gamma = \text{plim} ZZ'/T$ and the estimators are

$$\hat{\Gamma} = \frac{ZZ'}{T}$$

$$\hat{\Sigma} = \frac{1}{T - np - 1} z(I_T - Z'(ZZ')^{-1}Z)z'$$